An Engineered Aro1 Protein Degradation Approach for Increased cis,cis -Muconic Acid Biosynthesis in Saccharomyces cerevisiae
نویسندگان
چکیده
منابع مشابه
Biosynthesis of natural flavanones in Saccharomyces cerevisiae.
A four-step flavanone biosynthetic pathway was constructed and introduced into Saccharomyces cerevisiae. The recombinant yeast strain was fed with phenylpropanoid acids and produced the flavanones naringenin and pinocembrin 62 and 22 times more efficiently compared to previously reported recombinant prokaryotic strains. Microbial biosynthesis of the flavanone eriodictyol was also achieved.
متن کاملIncreased mortality of Saccharomyces cerevisiae cell wall protein mutants.
The yeast cell wall contains an unusually high number of different mannoproteins. The physiological role of most of them is unknown and gene disruptions leading to depletion of different proteins do not affect major functions of the wall. In this work the phenotype of different single and multiple cell wall protein mutants was observed at the level of individual cells. It was found that the lac...
متن کاملGenome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
BACKGROUND n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of the molecular basis of butanol stress and tolerance...
متن کاملThree-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae
BACKGROUND Glutathione (GSH), a pivotal non-protein thiol, can be biosynthesized through three pathways in different organisms: (1) two consecutive enzymatic reactions catalyzed by γ-glutamylcysteine synthetase (Gsh1 or GshA) and glutathione synthetase (Gsh2 or GshB); (2) a bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (GshF); (3) an alternative condensation of γ-glutamyl ph...
متن کاملDegradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.
Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Environmental Microbiology
سال: 2018
ISSN: 0099-2240,1098-5336
DOI: 10.1128/aem.01095-18